Testing and Analysis Methods for Rubber Durability

W. V. Mars Endurica LLC September 26, 2023 Ohio Rubber Group

About Endurica LLC

Jesse Suter Development Engineer

Mark Bauman Engineering Ānalyst

Ethan Steiner, Sales Engineer

Will Mars, Ph.D., P.E. Founder and President

Joe Suter Financial Manager

Pauline Glaza Marketing Manager

Endurica

- Focus: simulating elastomers and durability
- 13 of the top 20 global rubber part suppliers use **Endurica solutions**

Common Design Intentions / Requirements for Durability

Rubber News

NEWS WAR IN UKRAINE CUSTOM RESOURCES DATA EVENTS ADVERTISE DIGITAL EDIT

Home > Automotive

September 24, 2021 11:09 AM

GM exec: Virtual design should be seen as opportunity

ANDREW SCHUNK 🎔 in 🖂

Rubber News Staff

TWEET **f** SHARE **in** SHARE EMAIL

DETROIT-Zero crashes, zero emissions and zero congestion-these are just a few of the lofty goals that General Motors believes can be achieved as it considers an engineering and design future filled with virtuality, artificial intelligence and electric vehicles.

With its own stated mantra of the dissemination of tire knowledge, the Tire Society kicked off its 40th conference in typical technical fashion, offering a keynote address that addressed virtuality and its role in automotive and tire modeling.

"With a shared foundation of scientific knowledge, our ongoing mission is fulfilled best by the scientists and engineers who develop this technology," said Tire Society President Will Mars in his Aug. 30 virtual introduction.

Mars gave way to Mike Anderson, GM's executive director of global virtual design, development and validation, for his 'Move to Virtual' keynote address. In it, Anderson discussed the savings, safety, regulatory environment and social acceptance of facing the technology in the coming years.

"We really amped up our move to virtual engineering starting in 2018, relying more and more on it to this day," he said, adding that the company already has reduced its tooling and physical prototyping costs for modeling by 66 percent, translating to \$6.5 billion savings. "Our goal, our challenge, is to be 100-percent virtual in these efforts by 2025." With virtual modeling, GM has reduced tooling and physical prototyping costs by 66 percent, translating to \$6.5 billion savings. GM aims to have 100-percent virtual design capability by 2025.

> - Mike Anderson GM Executive Director of Global Virtual Design, Development and Validation

Fatigue Analysis Tools

<u>CL</u>assic "total" fatigue life calculation with post-process only workflow, for a single duty cycle.

Incremental fatigue life calculation with co-simulation workflow for accumulating many duty cycles.

Efficient Interpolation Engine for fast, nonlinear conversion of road load data to strain/stress history

Design Objectives and Analysis Approaches

- Companion is a Fatigue Property Comparator
- Built for A to B comparisons
- Browser-based works on both desktop and mobile
- Built on the Endurica fatigue solver engine / Critical Plane Analysis
- Simplified User Interface focused on key material properties
- Start for free at companion.endurica.com!
- Get advanced features with a subscription

0%

40% of product failure is attributed to poor materials selection

Material Testing Framework

Thermal

Quantify dissipative properties,

thermal properties, temperature

dependence

Fatigue Property Mapping

Know Your Material

Basic mechanical behavior

Hyperelastic

Simple, planar, and equibiaxial tension, Mullins effect

Core Fatigue

Fully relaxing behavior from both nucleation and fracture mechanical perspectives

Common behavior

Non-Relaxing

Quantify strain crystallization, min. and mean strain effects

Intrinsic Strength (>10⁶ cycles)

Quantify endurance limits

Cyclic Softening Quantify cyclic softening effects

Ageing (>10⁶ cycles)

Quantify endurance limit, estimate aging rate of stiffness, intrinsic and ultimate strength **Creep** Quantify creep crack growth rate effects

Reliability

Weibull statistics for strength and crack precursor size populations

Materials Characterization

Testing Instruments

Endurica is the exclusive distributor of these Coesfeld instruments in the Americas

Intrinsic Strength Analyser

- Measures cutting forces on an instrumented blade of controlled sharpness
- Indicates the threshold fracture mechanical strength of a polymer network (i.e. the mechanical fatigue threshold)
- Based on the Lake and Yeoh procedure

Tear and Fatigue Analyser

- Measures crack growth under dynamic loading cycles
- Produces the crack growth rate curve as a function of applied tearing energy
- Produces parameters for describing effects of strain-crystallization on crack growth
- Includes protocols for both fully relaxing (R=0) and nonrelaxing (R>0) conditions

Instrumented Chip and Cut Analyser

- Measures chip and cut resistance of rubber compounds under cyclic impact loadings
- Highly instrumented to enable control and measurement of forces and displacements during impact to mimic conditions experienced in demanding applications
- The instrument can be also be operated in full contact mode as a friction and wear

MATERIALTEST

measurement de

Endurica Imperatives

• Accuracy

- Nonlinear Effects -> Material models
- Critical Plane Analysis multiaxial, variable amplitude loading
- Incremental Analysis material property evolution
- Completeness
 - Support for infinite life, safe life and damage tolerant approaches
 - Support for Abaqus, Ansys, Marc and cosimulation
 - Support for full road loads
 - Support for tires: steady state and transient
 - Materials characterization infrastructure
- Scalability
 - Multithreading
 - Computational efficiency
 - Experimental efficiency

Upper and Lower Limits on Tearing Energy

Intrinsic Strength Analyser

- Measures T_0 and T_c
- Rapid results (1 hour)
- Simple, conservative test
- Simple, conservative analysis

ISA vs. TFA

Get Durability Right

Stoček, R. (2021) Revision of Fatigue Crack Growth Characteristics of Rubber. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling (eds. Heinrich, G., Stoček, R., Kipscholl, R.), Springer (chapter accepted for publication).

Fertilizer Squeeze Pump Safety Factor Analysis

Infinite Life Safety Factor Analysis

Endurica

Get Durability Right

Fatigue Analysis Software

Fatigue Crack Growth Rate Measurement

	Step	Ramp	
Fracture Strength T_c , J/m ²	18500		
Power-law Slope F_0	2.086	2.025	
Reference growth rate r_c , mm/cyc	0.00442	0.00266	
Standard Deviation s	0.262	0.108	

Goossens, Joshua R., and William V. Mars. "Finitely scoped, high reliability fatigue crack growth measurements." *Rub ber Chemistry and Technology* 91, no. 4 (2018): 644-650.

Strain Crystallization and Mean Strain Effects

Ruellan, Benoît, J-B. Le Cam, I. Jeanneau, F. Canévet, F. Mortier, and Eric Robin. "Fatigue of natural rubber under different temperatures." *International Journal of Fatigue* 124 (2019): 544-557.

Validation of NR vs. SBR life predictions (nonrelaxing)

- Life predicted to within 3x
- Crack orientation predicted to within ±5°

Get Durability Right

Ozone Attack: NR/EPDM Blends

FORMULARY		ACE Target Requirement	Variant 1	Variant 2	Variant 3	Variant 4
First Pass						
NR	CV60		100.00	80.00	70.00	50.00
EPDM	Royalene 301T		-	20.00	30.00	50.00
	N330		45.00	45.00	45.00	45.00
790 Oil Zinc Oxide			8.00	8.00	8.00	8.00
			5.00	5.00	5.00	5.00
Stearic Acid			2.00	2.00	2.00	2.00
Sulfur			0.80	0.80	0.80	0.80
Vultac 710			1.00	1.00	1.00	1.00
TBBS			1.00	1.00	1.00	1.00
ZBDC			1.00	1.00	1.00	1.00

Get Durability Right

Life of logo With Ozone

Fatigue Life-1

+1.000e+20 +1.000e+19 +1.000e+18

Life of logo With Ozone

Fatigue Life-1

+1.000e+20 +1.000e+19 +1.000e+18

Results: T_0 , T_c , E evolution

Experimental results from paper #A29. Thanks to Ed

Terrill (ARDL) and Radek Stocek (Coesfeld) for

Incremental Fatique Solve

25

Ageing Effects

Demo – Fatigue under Temperature Gradient

ТЕМР

(Avg: 75%)

+1.000e+02 +9.167e+01

+8.333e+01

+7.500e+01

+6.667e+01 +5.833e+01

+5.000e+01

+4.167e+01 +3.333e+01

+2.500e+01

+1.667e+01 +8.333e+00 +0.000e+00

N=10000 cycles HISTPERIOD=6.94E-4 ! days (=1 min)

MAT=FILLEDNR ELASTICITY TYPE=NEOHOOKEAN SHEAR MODULUS=3 ! MPa BULK MODULUS=3000 ! MPa FATIGUE TYPE=LAKELINDLEY FLAWSIZE=0.1 ! mm FLAWCRIT=1.0 ! mm RC=1E-3 ! (mm/cycle) TCRITICAL=10.0 ! kJ/m^2 THRESHOLD=0.04 ! kJ/m^2 TRANSITION=0.45 ! kJ/m^2 $F_{0=2}$ TEMPCOEF=0.03 ! 1/DEGC TEMPREF=20 ! DEGC AGEING TYPE=ARRHENIUS E ACTIVATION=49e6 ! mJ/mol MASTERTEMP=23 ! degC GASCONSTANT=8314.0 ! mJ/mol/degC ABSZERO=-273 ! degC MASTERCURVE=TIME, THRESHOLD, TCRITICAL, MODULUS 0.040 10.000 1.0 0.0 1.0 0.039 9.500 0.97 3.0 0.038 9.000 0.98 10.0 0.037 8.500 0.95 30.0 0.030 8.000 1.0 100.0 0.028 7.750 1.1 300.0 0.020 6.000 1.2 1000.0 0.010 3.000 1.3

Aged vs. Unaged Fatigue Life

Endurica Get Durability Right

Validation of Block Cycle schedule life prediction

2022-01-0760 Published 29 Mar 2022

Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach

C Elango, Sathish Kumar Pandi, and Roshan N Mahadule FCA Engineering India Pvt, Ltd.

Touhid Zarrin-Ghalami FCA US LLC

Citation: Elango, C., Pandi, S.K., Mahadule, R.N., and Zarrin-Ghalami, T., "Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach," SAE Technical Paper 2022-01-0760, 2022, doi:10.4271/2022-01-0760.

TABLE 1 Test and CAE comparison for Fatigue Life.

Fatigue Life (blocks)				
In CAE (Virtual simulation)	In Physical test			
520	540	510	540	500
	Average = 523			

- Failure mode predicted
- Life predicted to within repeatability of test

Summary

- Material Models
- Procedures
- Validation
- Capacity
- Get Durability Right!

OEMs expect virtual proof of durability from component suppliers on bids for new business.

Solutions for Elastomer Durability