Chain Shuffling: A Synthetic Pathway to Multiblock Copolymers

Abhishek Banerjee

Tuesday, April 18, 2023

Abundance of PE/iPP

2 T. J. Hutley, M. Ouederni. *Polyolefins – the History and Economic Impact.* **2015**, Springer Series on Polymer and Composite Materials.

The Challenge

top two polymers

over 120 million tons produced annually

The Challenge

- Virgin PE and virgin iPP have high % elongations
- The addition of even a slight minor component drastically reduces % elongation

⁵ J. Appl. Polym. Sci. **1980**, 25, 1703–1713.

Tetrablock Copolymers

Pyridyl amidohafnium catalysts enable multiblock architectures

iPP-b-PE-b-iPP-b-PE tetrablock copolymer

conditions: Hf catalyst (25 μ mol), B(C₆F₅)₃ (25 μ mol), propylene (1.0 g), *then* ethylene (1.4 atm), 4 minutes, *then* propylene (1.0 g), *then* ethylene (1.4 atm), 4 minutes, toluene (150 mL), 22 °C.

Tetrablock Copolymers

iPP-b-PE-b-iPP-b-PE tetrablock copolymer

conditions: Hf catalyst (25 μ mol), B(C₆F₅)₃ (25 μ mol), propylene (1.0 g), *then* ethylene (1.4 atm), 4 minutes, *then* propylene (1.0 g), *then* ethylene (1.4 atm), 4 minutes, toluene (150 mL), 22 °C.

Tensile Properties

A) J. M. Eagan, et al. *Science*. **2017**, *355*, 814–816.

B) J. M. Eagan, G. W. Coates, A. M. LaPointe. WO2017205774A1. 2017.

Advantages of Multi-blocks

Diblocks:

- Long diblocks co-crystallize in the crystalline domain
- Entanglements are relatively easy to dissociate

Tetrablocks:

- Tetrablocks exhibit trapped entanglements
- Dissociating entanglements requires greater force than bulk failure of the PE matrix

Living Catalysts for iPP-BCP

10 Domski, G. J.; Rose, J. M.; Coates, G. W.; Bolig, A. D.; Brookhart, M. Prog. Polym. Sci. 2007, 32, 30.

Limits of the System

1) Too much catalyst

100m tons PE	2,000 tons MBCP	2 mol Hf
1 year	1m ton PE	1,000 kg MBCP
(annual PE)	(0.2 wt%)	(500 kDa)

= 400 mol Hf/year = **71 tons Hf/year Global production = 70 tons Hf/year**

2) Compositionally limited

iPP/LLDPE

iPP/PIB

Polypropylene Block Copolymers

Non-living CCTP

Chain-Transfer Polymerization

- Commercially scalable
- End-functionalization
- Termination in iPP
- Tacticity/reversibility is a challenge
- Comonomers are limited

Additional PP-CCTP references: Science, 2006, 312, 714. J. Am. Chem. Soc. 2008, 130, 442. Macromolecules 2000, 33, 9192. Macromolecules 2007, 40, 7736. J. Am. Chem. Soc. 2004, 126, 10701. Macromol. Chem. Phys. 2006, 207, 295. ACS Catal. 2021, 11, 10170.

Macromolecular Engineering with iPP

End-Functionalized iPP

- Non-living method
- Versatile comonomers
- Independent tuning of crystallinity

Reactive Hydrocarbon Approach

Methods for Telechelic iPP

Sawaguchi and coworkers *Macromolecules* **1995**, *28,* 7973–7978.

Shiono and coworkers *Macromolecules* **2003**, *36*, 9675–9677.

Synthesis of Unsaturated iPP

Shiono and coworkers *Macromolecules* **2003**, *36*, 9675–9677.

- Butadiene slows polymerization
- Yields < 2.5g
- $T_{\rm m} = 97 \,^{\circ}{\rm C} 150 \,^{\circ}{\rm C}$
- %1,4 = 0.23% 5.38%

Coates and coworkers

- J. Am. Chem. Soc. 2022, 144, 12613-12618.
- Cyclization of dienes
- *T*_m < 100 °C
- %1,4 = 0.26% 1.18%

Scalable Unsaturated iPP Synthesis

Entry (#)	Cat. conc. (µmol)	Initial C ₃ H ₆ (mmol)	Final C ₃ H ₆ (mmol)	Initial BD (mmol)	Aluminoxane (mmol)	T _{rxn} (°C)	Time (h)	Yield (g)	M _n (kg/mol	#1,2 BD (per chain)	#1,4 BD (per chain)	T _m (°C)
1	10	118.8	286.6	38.3	MMAO(1000)	25	6	2.28	26.4	1.63	6.07	139.3
2	20	118.8	413.0	74.0	MMAO(1000)	25	3	1.95	35.2	4.99	13.15	128.0
3	20	393.8	539.5	79.3	PMAO(4000)	25	3	6.13	31.3	3.10	10.83	130.9
4	20	558.4	665.3	74.5	PMAO(4000)	0	3	4.50	49.7	2.06	4.68	148.2

Nouryon's PMAO-IP improves the <u>productivity</u> of propene/1,3-butadiene polymerization using conventional isospecific metallocenes

Scalable Telechelic Polyolefin Synthesis

LLDPE-ran-iPP Multiblock Copolymer

Morphology and Crystallization

Commercial LLDPE:iPP blend

- Macro phase separation
- High crystallinity / modulus
- Poor mechanical properties

Dow Infuse OBC (multiblocks)

- Homogeneous phase
- Low crystallinity / modulus
- Elastomeric properties

Dow INTUNE (PE-PP diblocks)

- Micro phase separation
- High crystallinity / modulus
- Compatibilizer

Multiblock (shuffling)

- Homogeneous phase
- High crystallinity / modulus
- Compatibilizer

TEM images of Dow materials from:

Munro, J.; Hu, Y.; Laakso, R.; Madenjian, L.; Vervoort, S.; Werner, S.; Marchand, G. Polypropylene-Rich Blends with Ethylene/α-Olefin Copolymers Compatibilized with INTUNE™ Propylene-Olefin Block Copolymers.

Infuse chemistry: Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T., Science 2006, 312, 714–719.

Shuffling Catalyst Selection

For metathesis catalyst design and stability to ethylene/temperature see: Fogg and coworkers. J. Am. Chem. Soc. **2019**, 141, 10626–10631.

Shuffling Catalyst Selection

Key Catalyst Findings:

- Bulky cyclic alkyl amino carbenes
 improve thermal and ethylene stability
- Monofunctional Ru alkylidene limits molecular weight
- Sufficient catalyst activity is required for reactivity

T₁ Relaxation Studies

Sample	T ₁ (ms)			
	PP	PE		
iPP/PE (Blend)	792	1921		
Intune (Diblock)	658	667		
iPP–PE (Multiblock) (Sample 1)	765	851		

Covalently linked segments exhibit similar relaxation times

SAXS of Multiblock Product

Scattering invariant increases for the multiblock sample.

Greater number of domains leads to more interfaces, which leads to more scattering intensity

Crystallinity Studies of Multiblock Product

Compatibilization Efficiency

Compatibilization Efficiency

Molecular Weight Effects of MBCP

Future Work (In Progress)

Future Work (In Progress)

Acknowledgements

Funding & Resources Provided By:

Braskem

Collaborators:

Aarushi Srivastava Navin

Navin Kafle

Materials and Samples:

Dr. Li Jia

Dr. Tohi Miyoshi

Nouryon

Advisor: