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@\ What is a rubber or “elastomer”?
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omer
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(holds for very low strains in rubber)



Molecularly, the rubber looks like this...

/ highly coiled rubber chain

crosslink (bond between 2 rubber chains)

It is highly disordered or “entropic”; think of a bowl of spaghetti



If you “moderately” stretch it

low entropy

high entropy

This is why a rubber band immediately snaps back after stretching and releasing it: it does
not want to be in the lower entropy state but rather the high entropy state.

Rubbers are “soft” because their resistance to deformation is not from primary bond
stretching but from coil deformation and uncoiling.



Rubbers store and return energy

Rubbers will store and return a portion of an imposed strain energy while the rest is lost

as heat:
Strain energy in (pull rubber band) = Strain energy out (rubber band snaps back) + Heat
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Efficiency(%) or “Resilience”,R = 100 — Hysteresis



Solvent swelling of rubber

Besides hyperelasticity and entropy-dominated elasticity, rubbers can also be highly
swollen with suitable solvents. Many rubber products contain small molecular weight

liguids as additives to improve processing and performance. Biological structures (like
you) can be considered a hydrogel or water swollen biological polymer/rubber.
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Some biomechanics examples

We discussed the basic structure of elastomers and solvent swollen elastomers because
natural biological elastomers are water (H,0) filled proteins typically of high efficiency. They
have structures that have evolved to do so.

“Catapult or Power Amplification Mechanism”
fleas, grasshoppers: https://www.youtube.com/watch?v=39EnHSg59mA

”Storing Energy for Flying”
locusts, fruit flies: https://www.youtube.com/watch?v=hduHsmk3QXM

“Storing Energy for Swimming”
Scallops: https://www.youtube.com/watch?v=NBH3UvI|Z090
Jellyfish: https://www.youtube.com/watch?v=Q2z72S5esu8

“Return Springs”

Other bivalve mollusks that just use rubber to open close:
https://www.youtube.com/watch?v=6ceeZZ27GhY

R~96-97% for scallops, R~80% for others (the amino acid sequence has more glycine, G)

Many others: Human Achilles tendon to store energy for running, ungulates able to snap
neck back up, elastin in arteries to help blood flow, flagelliform silk, etc.


https://www.youtube.com/watch?v=39EnHSg59mA
https://www.youtube.com/watch?v=hduHsmk3QXM
https://www.youtube.com/watch?v=NBH3UvlZo90
https://www.youtube.com/watch?v=Q2zZ2S5esu8
https://www.youtube.com/watch?v=6ceeZZ27GhY

Proteins are made of amino acids
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Protein elastomeric repeats

G-rich:
Abductin: FGGMGGGNAG, GGFGGMGGGX (disulfide bonds)

G-, P-rich:

Elastin:  VGVAPG, VGVPG, VPGG, VGGLG, LGGLG (desmosines, isodesmosines,
lysinonorleucines, (dehydro)lysinonorleucines)

Resilin: PGGGNGGRPSDTYGA (N-terminal repeat), PGGQDLGGYSGGR (C-terminal
repeat) (tyrosines)

Flagelliform silk:  GPGGSGPGGY ([3-sheets)

Collagen: GXY (GPA, GPV, GKS, GAO) (GPO triple helix)
G-, P-, Qrich:
Glutenin: PGQGQQ, GYYPTSPQQ (disulfide bonds)

Dragline silk: GPGQQ, GPGGY, GGYGPGS (PB-sheets)



Biological elastomers exist in a complex environment

Elastin molecules
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Elastin and Collagen

Elastin and collagen appear together. Both
appear near fat and muscle.

Collagen appears with proteoglycans (sugars).

Resilin

Resilin and chitin (sugar) appear together.
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Biological elastomers in biomechanics

Biological elastomers that serve biomechanical functions in
animals and insects are:

a fringed micelle protein structure
surrounded by water

and sugars

and possibly fats and other molecules

You know what this is?

A gummy bear!
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S5 Gummi (“rubber”) bears

The Haribo gummy bears resist the squishing more!
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@\ Gelatin is a biological elastomer

gelatin (nice fringed micelle) collagen

‘‘‘‘‘‘‘‘

lots of H,O a little H,0
a little sugar lots of sugar



Mix small molecules and sugars w/ gelatin

1:2271 mol:mol gelatin:added liquid; syrups = 3:1 mol:mol H,0:sugar

All formulas based off a commercial gummy candy formulation
linear:
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Elastic (Storage) Modulus, G' (Pa)

The sugar affects the network stiffness
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Loss Tangent, tan &

The sugar affects the rubber efficiency
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" The sugar affects the network structure
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Loss Tangent, tan &

What influences efficiency?

different shifting: different molecular mechanisms

—— ethylene glycol —#— sorbitol —>— fructose

—S— wat —— corn syrup (1927 mol)
] 00 —&S— glycerol —/— glucose ; 00
T T
v=0.1% v=0.1%
w0 EZa
R -
8
> 107
c
K
2]
7]
(@]
|
10'2 PRI ol T B 10'2 L | ! 1 |
102 10" 10° 10" 10> 10° 10* 102 10" 10° 10" 10> 10® 10
a ‘o (rad/s) (a) a *w (radfs) (b)
[Ze]
C
8
-
C
[}
()]
S
|_
(/2]
(2]
S glass
rubber
a*w

Being far from the glass
transition, i.e., squarely
in the rubbery region
(see unshifted tan o
data).

Having a lot of exposed
CH, groups to maintain
entropy in an agueous
environment (see sugar
structures).



" Creating bioelastomer devices
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Viscoelasticity allows for the time dependence: use for gripping or motility with
designed efficiency.



